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Abstract: Background: Blended-care behavior change interventions (BBCI) are a combination of
digital care and coaching by health care professionals (HCP), which are proven effective for weight
loss. However, it remains unclear what specific elements of BBCI drive weight loss. Objectives:
This study aims to identify the distinct impact of HCP-elements (coaching) and digital elements
(self-monitoring, self-management, and education) for weight loss in BBCI. Methods: Long-term
data from 25,706 patients treated at a digital behavior change provider were analyzed retrospectively
using a ridge regression model to predict weight loss at 3, 6, and 12 months. Results: Overall relative
weight loss was −1.63 kg at 1 month, −3.61 kg at 3 months, −5.28 kg at 6 months, and −6.55 kg
at 12 months. The four factors of BBCI analyzed here (coaching, self-monitoring, self-management,
and education) predict weight loss with varying accuracy and degree. Coaching, self-monitoring,
and self-management are positively correlated with weight losses at 3 and 6 months. Learn time
(i.e., self-guided education) is clearly associated with a higher degree of weight loss. Number
of appointments outside of app coaching with a dietitian (coach) was negatively associated with
weight loss. Conclusions: The results testify to the efficacy of BBCI for weight loss-with particular
positive associations per time point-and add to a growing body of research that characterizes the
distinct impact of intervention elements in real-world settings, aiming to inform the design of future
interventions for weight management.

Keywords: blended-care behavior change interventions; weight loss; coaching; self-monitoring;
self-management; education

1. Introduction
1.1. Background

Blended-care behavior change interventions (BBCI) are a combination of digital care
and coaching by health care professionals (HCP) that have proven themselves effective
for weight management [1–8]. BBCI comprise the remote delivery of care with digital
communication tools (e.g., an app-based chat), actual care by HCP (e.g., app-feedback by a
dietitian), as well as self-administered digital intervention elements (e.g., self-monitoring
through photo-logging of meals). Accordingly, BBCI are distinct from stand-alone digital
care, where patients are not supported by an HCP (e.g., chat bots) [9]. BBCI have enormous
potential to tackle the rising obesity prevalence rates through increasing the accessibil-
ity of care, whilst being scalable and economical, and relieving the pressure on scarce
HCP-resources [10,11]. In particular, their potential for large-scale weight management
interventions is promising and unprecedented [12]. Additionally, qualitative research
highlights that patients appreciate the easy integration of BBCI into their daily routines
and the high levels of flexibility [3,13], driving overall adherence [1]. Constantly evolving
technology offers a host of digital care approaches for nutrition-related diseases that can be
combined with HCP-care in multiple ways, ranging from remote monitoring of patients’
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parameters and peer-group support chats to telehealth sessions with doctors [11]. As a
consequence, BBCI are diverse and complex, complicating research on their effectiveness.
Against this backdrop, systematic reviews and meta-analyses on the effectiveness of BBCI
for weight management report mixed results—mostly attributed to the heterogeneity of
studies—and unanimously call for more rigorous research [1,5–8]. Metzendorf et al. [14]
stated that the theoretical underpinnings and care components needed clarification. In
a similar vein, Chatterjee et al. [15] called for analysis of frameworks, procedures, and
methods, whilst Duan et al. [7] advocated for improving intervention designs.

One way to improve the understanding of BBCI is to analyze their components, i.e.,
their distinct intervention elements along with their impact for weight loss. Identifying and
quantifying the potent intervention elements requires the segmentation, differentiation,
and standardization of the elements of interventions. The behavior change taxonomy is a
conceptual framework offering this; characterizing 93 distinct behavior change techniques
used in complex interventions [16]. Various systematic reviews apply the behavior change
taxonomy to identify and gauge the effects of intervention elements in BBCI [6,17–19]. Due
to the widespread usage of the behavior change taxonomy, this approach is conducive
as it aids standardization. The taxonomy does not however account for the origin of the
intervention element, i.e., HCP versus digital, thereby neglecting a potentially impactful
distinction. Thus, existing evidence is categorized and reviewed here in accordance with
the distinct BBCI in the focus of this study—that is, HCP-delivered elements (coaching)
and digital elements (self-monitoring, self-management, and education) for weight loss.

The HCP themselves, the feedback they provide, as well as the rapport they establish
with their patients have all been identified as critical to the success of interventions [20,21].
Operationalizing the HCP element for research purposes is challenging due to the complex-
ity of the human interaction. One option is to examine HCP’s use of intervention methods,
such as behavior change techniques and motivational interviewing. However, such studies
yielded mixed and partially inconclusive results, likely linked to this complexity [22]. For
example, feedback on behavior by the HCP is a very frequent intervention element, yet
varying definitions, intensities, and delivery styles complicate comparisons [21]. For sim-
plification and quantification purposes, the interaction frequency between HCP and their
patients (e.g., number of sessions or number of chat messages) can be used. Following this
approach, Painter et al. [23] quantified the small, but positive, contribution of individual
HCP-patient messages on patients’ adherence (food logging, meal logging, physical activ-
ity). The mode of communication between the HCP and their patients (e.g., face to face,
app-chat or telephone) seems to have no impact on outcomes, with face-to-face and remote
interventions yielding comparable results [24]. However, patient characteristics might
influence the perceived HCP elements, e.g., in the formation of rapport, influencing the
efficacy of BBCI. In fact, research has identified patient-specific barriers, such as technology
illiteracy [25], age [26], and socioeconomic status [27], although the distinct impact of
these factors remains unclear. In addition, patients’ perceptions of the intervention and
its progress could impact BBCI outcomes. For example, Troinieri et al. [28] showed that
early weight loss was the strongest predictor of final weight loss. Early perceived success
or failure might influence a patients’ motivation and thereby determine later outcomes.

With regard to digital elements, general usage frequency of the intervention device
(e.g., an app) has been shown to predict higher weight loss [12,29], testifying to the high
importance of adherence for effective weight management. Self-monitoring frequency
is often used as an indicator of adherence with a host of studies demonstrating that this
intervention element drives weight loss [6,30–33]. Specifically, Raber et al. [31] point out that
high as well as low intensity levels of self-monitoring are effective. Multiple digital tools
(websites, mobile applications, wearables, electronic scales; see [33]) are available for self-
monitoring, with mobile applications enabling photo-based meal logs. Meal logging has
been shown to be associated with higher weight loss in two retrospective analyses [23,34].

One reason for focusing on digital intervention elements is that they enable self-
care through assisting with self-management in patients’ everyday lives. A recent study



Nutrients 2022, 14, 2999 3 of 10

by Dwibedi et al. [35] demonstrated that digital self-management, even without HCP-
involvement, was beneficial for body weight, blood glucose levels, systolic blood pressure,
and insulin resistance in patients with type 2 diabetes. Assisted self-management with
digital means can be realized in multiple ways. One frequent feature of digital tools is
task/goal setting, allowing patients, for example, to set and monitor goals for daily physical
activity [6]. Importantly, tasks/goals can be set for behaviors and (clinical) outcomes,
depending on the feature and or the intervention design.

Education elements mainly aim to foster health-literacy for nutrition-related diseases
and their consequences. The rationale is that altered or additional knowledge will drive
the cognitive and emotional reappraisal of patients’ behaviors, leading to a decrease in
unhealthy behaviors, an increase in health behaviors, and ultimately in the formation of new
habits. While the efficacy of education aiming at self-reflection has been criticized due to its
over-reliance on cognitive processes and their questionable link to behaviors [36], education
is frequently used in BBCI, featuring prominently in 30% of app-based interventions [21].
Painter et al. [23] quantified the effect of education, operationalized as the completion of
digital lessons, to be a loss of 0.14 kg per completed lesson.

While coaching, self-monitoring, self-management, and education seem to contribute
to weight loss, their individual effects need scientific scrutiny. Because intervention ele-
ments are often administered in combination or clusters [6], the analysis of their individual
contribution to weight loss is methodologically challenging. In addition, the effects of
intervention elements (and their associated technological features) could potentially only
unfold when combined. On this point, Antoun et al. [21] illustrated that individual features
or their total number were not associated with weight loss. Due to the complexity of
BBCI in real-world care settings, several (digital and human) factors will create intercorre-
lated, higher-order factors, whose impact—in isolation and in combination—has yet to be
analyzed in detail.

1.2. Goal of This Study

Against this backdrop, the aim of this study was to determine the individual effect of
intervention elements in BBCI on weight losses at 3, 6, and 12 months in a real-world setting.
For this, long-term data (>12 months) from 25,706 patients treated at a digital behavior
change provider for nutrition-related conditions were analyzed retrospectively. HCP-
elements (coaching) and digital elements (self-monitoring, self-management, education)
were analyzed separately. We hypothesized that higher amounts of all four intervention
elements would drive higher weight loss.

2. Materials and Methods
2.1. Study Design

A retrospective linear regression (Bayesian ridge regression with standardized targets
and covariates) was performed. One HCP- (coaching) and three digital intervention
elements (self-monitoring, self-management, and education) at months 1–3 were used as
predictors for 3-, 6-, and 12-month weight loss.

2.2. Participants

Data from 25,706 patients (17,749 female, 7880 male, 77 unspecified; mean age: 47.3 years,
SD 10.96), who received BBCI at a digital behavior change provider (Oviva AG) for pre-
vention or therapy of nutrition-related conditions in the UK, Germany, and Switzerland,
were analyzed after patients had completed an intervention period of up to 12 months.
Patient data was included in the analysis if they used the Oviva app and had weight data
available at baseline, in addition to at least one outcome weight at 1, 3, 6 or 12 months. All
patients acknowledged and confirmed Oviva’s terms and conditions and privacy policies
(per country) and thus consented to their anonymized data being used for research.
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2.3. Application and Delivery of BBCI

BBCI, featuring HCP- and digital elements, were made accessible for participants, for
at least 12 months. The HCP- intervention element (coaching) was delivered in line with
the respective national guidelines for the particular nutrition-related disease by certified
health coaches and/or dietitians. The number of sessions, timing of sessions, and session
lengths varied per country and per care pathway, respectively. For interaction with the
coach and delivery of the digital BBCI (self-monitoring, self-management, and education),
the Oviva app was used (available for Android phones and Apple phones). With the
app, patients self-monitored by using photos to log meals and by logging other health-
related behaviors (such as physical activity). The app allowed for self-management with a
task/goal setting feature (including reminders and an overview of completed tasks). Lastly,
condition-specific education materials (texts, videos, podcasts) were delivered via the app.

2.4. Data Collection

Data on all four BBCI were continuously and automatically collected in the secure
system of the digital behavior change provider. The three digital BBCI (self-monitoring,
self-management, and education) were registered via the app of the provider whenever
patients applied them. For example, the event of a patient taking a photo of their meal
via the app created a specific log entry, allowing for continuous data collection on meal-
logging (self-monitoring). The HCP- intervention element (coaching) was registered via the
provider’s patient management system that logged all appointments and coach messages.

2.5. Measures and Statistical Analysis

Clinical weight outcomes were predicted at t ∈ [1, 3, 6, 12] months after an initial
coaching session with a dietitian had taken place. More specifically, the relative weight
change was predicted, δt,i = wt,i /w0,i − 1, where wt,i is the body weight at time t of user i.

For the independent variables, seven covariates were used, based on the four inter-
vention elements specified above. With the exception of self-management, intervention
elements were operationally defined by two metrics each, to account for the variability of
definitions of BBCI found in the literature and to make the measurements more robust (see
column ‘covariate/aspect of intervention element’ in Table 1).

Table 1. Description of independent variables used in the multiple regression.

Intervention Element Covariate/Aspect of
Intervention Element Description Unit

Coaching
Appointments Number of live sessions with a coach, either via

phone or face to face, within the period (0, τ). 1

Coach messages Number of messages sent to the patient by the
coach via the Oviva app within the period (0, τ). 1

Self-Monitoring

Meal logs Number of meals tracked via text and/or photo
within the Oviva app and the period (0, τ). 1

Other logs
Number of activities, symptoms or measurements

(e.g., weight, blood glucose) tracked within the
Oviva app and the period (0, τ).

1

Self- Management Completed tasks
Number of completed tasks assigned by the coach

or the patient, e.g., track your meal today, make
5000 steps, etc., within the period (0, τ).

1

Education
Content diversity Number of unique learn units that have been

opened at least once within the period (0, τ). 1

Learn time Total time media content was open in the Oviva
app and within the period (0, τ). minutes

The model is a multiple regression, where the relative weight change δt,i is predicted
from the vector of normalized covariates cτ,i, where τ ≤ t.
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The model is:
δt,i = αt · cτ,i + βt + εt,i

where the residuals εt,i are assumed normally distributed with zero mean and unknown
standard deviation σt, i.e.,

εt,i ∼ N(0, σt)

The parameters αt , βt and σt are estimated for each outcome period t using Bayesian
inference utilizing the open-source Python library PyMC3.

Finally, the parameters were regularized by the following weekly informative prior
distributions:

αt ∼ N(0, 0.05), βt ∼ N(0, 0.05), and σt ∼ Hal f Normal(0.05).

Since any engagement is volunteered by the users, the inferred parameters do not have
a causal interpretation. Moreover, behaviors associated with digital intervention elements
(e.g., meal logging) vary greatly across individual users, which leads to differing cohorts
for each considered time period t. In particular, 6- and 12-months data for parts of the
sample considered was not available due to missing data.

3. Results
3.1. Overall Weight Loss

Table 2 shows average relative and absolute weight loss data for the cohort selected
here at the different time points.

Table 2. Average relative and absolute weight loss (in percent and kg, compared to average baseline
weight) at 1, 3, 6, and 12 months.

Time Point
Average Baseline Weight

(0 Month) ± Standard
Deviation

Average Relative Weight
Loss ± Standard

Deviation

Average Weight
Loss ± Standard

Deviation
Number of Patients (n)

1 month 106.7 ± 21.4 kg −1.63 ± 5.94% −1.89 ± 7.82 kg 15,012
3 months 106.6 ± 21.3 kg −3.61 ± 5.82% −4.02 ± 7.82 kg 9526
6 months 106.5 ± 21.1 kg −5.28 ± 6.94% −5.82 ± 9.10 kg 4204
12 months 106.5 ± 19.7 kg −6.55 ± 8.22% −7.22 ± 9.67 kg 979

Figure 1 depicts patients’ average relative weight loss over the course of 12 months.
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3.2. Contribution of Intervention Elements to Weight Loss

The four intervention elements and their subordinated aspects predicted weight losses
at 3, 6, and 12 months to varying degrees (see Figure 2).
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Figure 2. Contribution of the HCP-element (blue) and digital intervention elements (green, yellow,
red) to weight losses at 3, 6, and 12 months (including 95% credibility intervals for estimated
coefficients based on their posterior probabilities). Ordinate units are in standard deviation of
the relative weight change divided by the standard deviation of each covariate, respectively. For
example, a user with 1 standard deviation above average learn time during the first 3 months, is
predicted to achieve 0.04, 0.06, or 0.09 standard deviations above average weight loss at months 3, 6,
or 12, respectively.

3.2.1. HCP Element: Coaching

Number of appointments, the first aspect of the intervention element coaching, was
negatively associated with weight loss at 3 months (95% credibility interval of posterior
mass CI [0.04, 0.08]), 6 months (95% CI [0.02, 0.08]), and 12 months (95% CI [0.02, 0.15]).
Number of coach messages sent, the second aspect of the intervention element coaching,
was positively associated with weight loss at 3 months (95% CI [−0.08, −0.04]), 6 months
(95% CI [−0.09, −0.02]), and 12 months (95% CI [−0.12, 0.02]).

3.2.2. Digital Element: Self-Monitoring

Number of meal logs, the first aspect of the intervention element self-monitoring, was
positively associated with weight loss at 6 months (95% CI [−0.07, 0.0]) and 12 months
(95% CI [−0.13, 0.01]). At 3 months (95% CI [−0.03, 0.02]), we only yield 65% probability
that the coefficient is negative with expectation (−0.01) (see Figure 2). Similarly, for the
number of other logs, the second aspect of the intervention element self-monitoring, a
positive association with weight loss was observable, but with an overall lower expecta-
tion (3 months (95% CI [−0.03, 0.02]), 6 months (95% CI [−0.07, 0.01]), and 12 months
(95% CI [−0.14, 0.03]).

3.2.3. Digital Element: Self-Management

Number of completed tasks was positively associated with weight loss at 3 months
(95% CI [−0.11, −0.05]) and 6 months (95% CI [−0.10, −0.01]). At 12 months, we obtain
a 72% probability that the correlation with weight loss is positive with expectation 0.03
(95% CI [−0.13, 0.06]) (see Figure 2).

3.2.4. Digital Element: Education

Based on visual inspection (see Figure 2), the association of content diversity, the
first aspect of the intervention element education, with weight loss was likely small with
inconclusive direction (3 months (95% CI [−0.02, 0.03]), 6 months (95% CI [−0.03, 0.04]), and
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12 months (95% CI [−0.02, 0.14]). Learn time, the second aspect of the intervention element
education, was positively associated with weight loss at 3 months (95% CI [−0.06, −0.01]),
6 months (95% CI [−0.09, −0.02]), and 12 months (95% CI [−0.17, −0.0]).

4. Conclusions
4.1. Principal Results and Comparison with Prior Work

The obtained results indicate a complex relationship between the four intervention
elements (coaching, self-monitoring, self-management, education) and weight losses at 3, 6,
and 12 months.

First, intervention elements have different effects per time point. For example, self-
monitoring within the first three months (i.e., both aspects: meal logs and other logs)
correlates stronger with more distant weight-loss outcomes, indicating positive returns
of early self-monitoring at 6 and 12 months. Time-dependency is frequently evidenced
in BBCI in the form of a decline in patients’ adherence in the course of the treatment
and, as a consequence, a reduction of the frequency of self-administered intervention
elements [21]. Accordingly, the general usage frequency of digital devices used in BBCI
has been shown to predict higher weight loss [12,28]. Here, however, time-dependency
of different intervention elements is demonstrated for weight loss per treatment phase.
Self-management is clearly positively associated with weight loss but decorrelates for more
distant outcomes. This is symptomatic as task completion acts mainly as a mediator for the
other intervention elements.

Second, certain intervention elements have a positive correlation with weight loss
at all time points, testifying to their time-independence. The positive correlation of learn
time at 3, 6, and 12 months indicates that early-stage dietary education facilitates positive
weight outcomes throughout long-term care. For learn time, the positive correlation even
increases over time, indicating that early-stage education could act as a foundational driver
of later weight loss.

Third, differing operational definitions of intervention elements affect research results.
In this study, education was quantified with two metrics (content diversity and education)
and yielded differing results per metric. Learn time was positively associated with weight
loss throughout the considered timespan, whereas the association of content diversity
was negligible or negatively associated. The heterogeneity of operational definitions and
the resulting incomparableness (and possible irreproducibility) of findings is frequently
pointed out as an impediment in BBCI research [1,5–8]. Detailed documentation as well
as standardization of operational definitions for intervention elements (e.g., regarding
user-friendly design for digital intervention elements) to enable comparability between
studies will be conducive for future research.

Fourth, the HCP element coaching produced contradictory effects, which runs counter
to previous research [20,21]. Number of coach messages was positively associated with
weight loss, but the number of appointments was negatively associated. One possible
explanation for this lies in the utilization of coaching based on case severity. In general, more
complex cases will receive longer treatment periods and a higher number of appointments.
The resulting positive correlation of case complexity and number of appointments in this
sample could explain the counter-intuitive results obtained here. In addition, these patients
could rely on appointments without utilizing the self-administered intervention elements,
thereby not benefitting from the holistic effect of BBCI. Further subgroup analyses to
establish the specific association of certain BBCI with particular groups of patients are
needed for corroboration.

Fifth, there are seemingly unassociated aspects of intervention elements—e.g., con-
tent diversity at 3 and 6 months. Their lack of predictive value for weight loss might be
attributed to the intercorrelation of predictors in the model used, resulting in their rela-
tive insignificance when analyzed independently of the corresponding other aspect of the
respective intervention element (i.e., learn time for content diversity as part of coaching).
While it would be premature to discard these aspects, further analyses with refined opera-
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tional definitions (see above), alternative predictive modeling approaches, and different
samples might aid in understanding their individual contribution.

4.2. Limitations

The sample used in this study was highly diverse, e.g., patients had different nutrition-
related diagnoses and participated in a variety of treatment programs with different dura-
tions, coaching intensities, and treatment goals. In addition to this, the aim of this study
was to determine the individual effect of intervention elements in BBCI on weight loss;
however, this fine-grained mode of analysis might be hampered by intervention elements
acting synergistically. Their holistic effect on weight loss could be more than the sum of
their parts. Furthermore, predictors in the linear regression model used here were highly
intercorrelated, reducing the interpretability of the impact of the individual intervention
elements. Lastly, it is well established that patients with low weight loss are more likely to
churn or drop out from treatment over time [37]. Accordingly, these churned patients will
not have contributed data at later time points (e.g., 12 months). The regression model does
not account for this idiosyncrasy of the sample.

4.3. Conclusion and Future Research

The results are instructive as they inform an emerging body of research that strives
to single out the individual contribution of intervention elements for weight loss—with
the aim to inform BBCI monitoring and design. Future research could apply the linear
regression model along with the operational definitions of intervention elements used
here to different data sets to probe the consistency of the findings and to contribute to the
standardization of methodological approaches in the field. In addition, refining the model
by using alternative predictors, such as continuous data from wearables [38], could advance
the understanding of weight loss in real-world settings. In general, large-scale analyses of
real-world data sets that capitalize on the richness of digital devices as data sources will
likely aid the understanding of the uptake, adherence, patient-friendliness, and clinical
outcomes of BBCI [39]. For example, new modes of analysis are emerging: millions of app-
derived meal logs can be used to analyze a patient’s meal composition, potentially enabling
automated diet recommendations [40]. Tailoring [41] and personalization [42,43] of BBCI
in particular will profit from subgroup analyses of large data sets. In addition, research is
needed on how BBCI can improve existing treatment approaches and nutrition concepts
for weight management [44]. Future studies also need to determine which intervention
elements are best delivered by HCP and which can be delegated to digital devices to
make the best use of scarce HCP resources. Standardization of intervention elements and
associated operational definitions will be key to enable comparability and generalizability
of studies overall. Finally, clinical trials, especially randomized controlled trials, will need
to be conducted to drive BBCI research and corroborate findings from real-world data
analyses such as the study at hand. The resulting evidence base will be crucial to inform
decision-making within the growing number of healthcare systems that embrace BBCI [45].
To conclude, this study adds to a growing body of research on the efficacy of BBCI for
weight loss and documents their multifaceted impact per treatment phase in a real-world
care setting.
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BBCI blended-care behavior change interventions
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